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J. Phys. A: Math. Gen. 19 (1986) L625-L629. Printed in Great Britain 

LETTER TO THE EDITOR 

Operator content of the three-state Potts quantum chain 

G von Gehlen and V Rittenberg 
Physikalisches Institut, Universitat Bonn, Nussallee 12, D-5300 Bonn 1, West Germany 

Received 3 March 1986 

Abstract. We compute the lowest excitations of the spectra of the three-state Potts quantum 
chain with periodic and twisted boundary conditions. These spectra can be understood in 
terms of eighteen irreducible representations of the Virasoro algebra with c = 2. 

In this letter we consider the three-state Potts quantum chain defined by the Hamil- 
tonian 

where A is the inverse of the temperature, N represents the number of sites, U and r 
are the matrices 

1 0 0  0 0 1  
U=(: ; :) '=(A ; :) (2) 

and o = exp($.rri). This Hamiltonian is self-dual and has a critical point at A = 1 .  Our 
aim is to find the whole spectrum at the critical point in the finite-size scaling limit 
and express it in terms of irreducible representations (irreps) of the Virasoro algebra 
(Cardy 1986). A preliminary step in this direction was described in a previous publica- 
tion (von Gehlen et a1 1985). 

For periodic as well as twisted boundary conditions we have calculated the 6-8 
lowest states of each sector for always 3-13 sites using the Lanczos (1950) method. 
For zero momentum and periodic boundary conditions we went up to 14 sites. The 
results for up to 9 sites were checked by exact diagonalisation. 

We specify the boundary conditions taking in (1): 

rN+l=  w Q r l  (0 = 0,1 ,2)  (3) 
and obtain the Hamiltonians H'O'. If we take rNfl = 0 (free boundary conditions) 
we have The overall factor 2 / ( 3 f i )  in the Hamiltonian (1) (which fixes the 
Euclidean time scale in a conformal theory) is taken from von Gehlen et a1 (1986). That 
this is the proper factor can be checked by looking at the quadratic finite-size corrections 
to the ground-state energy per site for periodic boundary conditions: 

E p T a$" 

N 6 N 2  
-a,,+- -+. . . (4) 
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and for free boundary conditions: 

E LF’ a y ’  7r u p  
- a,+-+- 2+. . . 

N N 24 N 

From conformal invariance we have (Blote er a1 1986) 

a y 1  = c (6) 

a y ) =  c. (7) 

and (von Gehlen and Rittenberg 1986) 

In (6)  and (7 ) ,  c is the central charge of the Virasoro algebra equal to 3 for the 
three-state Potts model (Friedan er ul 1984, Dotsenko 1984). Since a, is known exactly 
(Hamer 1981) 

8 4  
a --+- 

“ 9 v 3  37r 

we fit aip1, aiF)  and a i F )  to the numerical results and obtain 

aiP)  = 0.800 08( 1 )  -0.230 193(1) aiF’ = 0.792( 1 )  (9) 
in agreement with c = :. 

Since the Hamijtonian ( 1 )  is 2, invariant, each of the matrices H‘O) has a block- 
diagonal form HbQ’ corresponding to the charge sector Q = 0 , l  and 2 of H‘”. At 
A = 1 self-duality and the supplementary &-symmetry of the Hamiltonian ( 1 )  give the 
following relations among the matrices HhQ’: 

(10) Q 2 .  

(The equalities among the matrices imply only that the spectra are the same.) We are 
thus left with only three independent matrices H?’, Hy’  and Hi’). We can further 
prediagonalise these matrices using their translational invariance and we will denote 
by E!$“(P) ,  Eio’(P) and E i ’ ) ( P )  the eigenvalues corresponding to the momenta P. 
(EbP’ is the lowest eigenvalue of Eio)(0).)  These eigenvalues depend on the number 
of sites N of the chain. 

We now consider the following quantities which are relevant for finite-size scaling: 

H p  = H‘P’ H,’d’ = H‘d) 

These quantities have been estimated numerically using Van den Broeck-Schwartz 
(1979) approximants and are given in tables 1 ,  2 and 3 for momenta up to three. For 
higher levels of certain sectors one encounters the problem that the sequences in N 
cross over and so in general we have been able to determine the % ( P )  up to the fifth 
or sixth level only. In this context notice the approximate degeneracy of the 
approximants corresponding to some levels. Altogether, we have determined 85 levels. 

This concludes the experimental part of our ‘spectroscopic’ work. We now turn 
to the ‘theoretical’ part of this letter where we try to explain the ‘observed’ spectra. 
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Table 1. The spectrum %Lo’( P). The Van den Broeck-Schwartz approximants for the levels 
are denoted by z4Lo)(P) (‘experimental’). The contributions of each irrep (A, A) to the 
spectrum according to (13) is shown. The numbers under each ( A , A )  indicate the 
degeneracy. The levels marked by an asterisk are doubly degenerate (parity doublets) even 
for finite chains. The spectrum for negative momenta is the same as for positive momenta. 
The figures in brackets in the last column indicate the estimated error. 

P A + r + i +  i: (0,O) (52,;) ( a , ; )  ( 3 , : )  ( z , ; )  (3,O) @)(P) (‘experimental’) 

0 0.8 
2.8 
4.0 
4.8 

1 1.8 
3.8 

2 2  
2.8 
4.8 

3.8 
3 3  

0.820 (3) 
2.79 ( I ) * ;  2.817 (2); 2.832 (2) 
3.996 (4) 
4.77 (2)*; 4.82 (2); 4.83 (1) 
1.798 (3); 1.824 (4) 
3.78 (2); 3.78 (1); 3.82 (1); 
3.83 (2) 
1.999 98 (4) 
2.77 (8); 2.8 (1) 
4.75 (6); 4.77 (5); 4.82 (4) 
2.995 (5); 2.999 (1) 

Table 2. The spectrum Es‘p’(P). Double degeneracy marked by * as in table 1. 

P A + r + i + f  (L 15, L) 15 (2, $1 $?’( P) (‘experimental’) 

0 A ~ 0 . 1 3 3  
$= 1.333 
$=2.133 
9 = 3.333 
6- 4.133 
y=  5.333 

1 g= 1.133 
= 2.333 

3 ~ 3 . 1 3 3  

2 s-2.133 

6 = 4.133 
3 3 ~ 3 . 1 3 3  

2 ~ 5 . 1 3 3  

?j? = 4.333 

9 == 3.333 

9 = 4.333 

0.1333 (1 )  
1.3333 (5) 
2.139 (1) 

4.13 (2)*; 4.138 (5); 4.18 (1) 
5.31 (7); 5.333 (l)*; 5.334 (5) 
1.1344 (5) 
2.332 (5) 
3.10 ( 5 ) ;  3.13 (5) 
4.329 (5); 4.332 (3) 
2.132 (1); 2.134 (3) 
3.32 (2); 3.332 (6) 
4.12 (3); 4.124 (5) 
3.13 (2); 3.13 (1); 3.13 (3) 

5.15 (5) 

3.333 (4) 

4.3 (1); 4.33 (2) 

Let A be the lowest weight of an irreducible representation (irrep) of the Virasoro 
algebra with c = $. Its possible values are (Friedan et a1 1984) 

A = A ( p ,  4) = A ( 5  - p ,  6 - 4) = [ ( 5 q  - 6 ~ ) ~ -  1]/120 ( 1 s p c 4 ,  1 S q c 5 ) .  (12) 

The degeneracy of the level ( A +  r )  ( r  = 0,1 ,2 , .  . .) will be denoted by d(A, r ) .  Using 
the character formula of Rocha-Caridi (1984), Altschiiler and Lacki (1985) have 
computed for us the values of d(A, r ) ,  which are shown in table 4. Keeping in mind 
that for a quantum chain with periodic boundary conditions (d=O) and twisted 
boundary conditions (6 = l) ,  the spectra are given by two Virasoro algebras with the 
same central charge, S:’( P), %‘io’( P) and S\”( P) receive contributions from a pair of 
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Table 3. The spectrum %$‘)(P) .  In this case the spectrum for negative momenta is different 
than for positive momenta (equation (13b)). 

P A + r + i + f  (:,A) (0,;) (:,&I (3,;) 8i’1(P) (‘experimental’) 

-2 2-1.666 
= 2.466 

$ - 4.466 

8-  1.466 
6 - 3.466 

- 4.666 
0 A-0.466 

3 = 2.466 
= 3.666 

3 - 4.466 
1 g-1.466 

$ = 2.666 
6 ~ 3 . 4 6 6  
y - 4.666 

2 E-2.466 - 3.666 - 4.466 

-1 3-0.666 

1.656 (5) 
2.39 (1); 2.5 (1) 
4.28 (2); 4.4 (2); 4.4 (1 )  
0.666 66 (3) 
1.47 (2) 
3.45 (2); 3.47 (2); 
3.48 (1); 3.51 (3) 

0.4667 (3) 
2.460 (5); 2.478 (2) 
3.665 (8) 
4.45 (2); 4.44(1) 
1.466 (5); 1.469 (2) 
2.667 (2) 
3.45 (2); 3.47 (2) 
4.67 (5) 
2.43 (3); 2.44 (6) 
3.65 (2); 3.663 (3) 
4.4 (1); 4.46 (4); 4.47 ( 5 )  

Table 4. The function d(A, r )  representing the degeneracy of the level (A+r)  of the 
irreducible representation with lowest weight A. 

r 

p q A O 1 2 3 4 5 6 7 8 9 1 0  

1 1 0 1 0 1 1 2 2 4 4 7 8 1 2  
2 1 f  1 1 1 2 3 4 6 8 1 1 1 5 2 0  
2 2 h 1 1 2 3 4 6 9  1 2 1 7 2 3 3 1  
3 1 :  1 1 2 2 4 5 8  1 0 1 5 1 9 2 6  

3 3 & 1 1  2 3 5 7 1 0 1 4 2 0 2 6 3 6  
4 1 3  1 1 2 3 4 5 8  1 0 1 4 1 8 2 4  
4 2 9 1 1 2 3 4 6 9  1 2 1 6 2 2 2 9  
4 3 3  1 1 2 2 4 5 8  I 0 1 5 1 9 2 7  
4 4 9  1 1 1 2 3 4 6 8  1 1 1 5 2 0  

3 2 a  40 1 1 2 3 5 7 10 14 19 26 35 

irreps. We denote them by A and a where x = A +  a and s = A -A are the scaling 
dimensions and the spin corresponding to the primary field associated with ( A ,  A). If  
an irrep (Ay  2) contributes to the spectrum %(P) one obtains the levels 

%( P) = ( A  + r )  + (a + P) ( 1 3 a )  

(136) 
with degeneracy d(Ay r ) d ( & ,  7). The value of a is zero for %C’(P) and Si0’(P) and 
it is for %!‘) (P) .  

P = ( A  + r ) - (A + P) - a 



Letter to the Editor L629 

We now determine the irreps ( A ,  E) of the Virasoro algebra which contribute to 
$“(P) ,  @‘)(P) and @‘)(P). One obvious condition on the possible values of A and 
A is that the momenta P are integer numbers (see (136)). 

In table 1 we show that the irreps (O,O), (g, $), (5, g), (g, g), (5, g), (3,0),  (0 ,3)  give 
a perfect description of the ‘experimental’ levels. We omit some levels at Sb0’(2) = 4.8 
and 8r)(3)=3.8  because we have not been able to compute numerically very high 
levels. ab“’ also probably contains the irreducible representation ( 3 , 3 )  which would 
show up at 8r’(O) = 6 but this goes beyond our computational abilities. It is important 
to notice that the irreps mentioned above form a closed subalgebra in the sense of 
short distance expansions (Belavin er al 1984). 

In table 2 we show that the irreps (&, &) and (f, 3) describe the ‘observed’ spectrum 
of 8y’(P) .  In table 3 we observe that the irreps ($,A), ( O , f ) ,  ($,A), (3,:) give the 
spectrum of %\‘)(P).  Since the spectrum of 8\’)(P) is the same as that of @’) (P)  (see 
(10)) but in this case a in (13b)  is 3 and the irreps for @’’(P) are obviously (A, g), 

In conclusion, the following 18 irreps of the Virasoro algebra with c = describe 
(f, 01, (&, 5) and (3 ,3 ) .  

the spectra of the three-state Potts model: 

86OYP): (0, O), ($, $), (5,3), <3,5), (5, 3, (3 ,  O), (0,3), (?)(3,3) 
$‘10’(P): (L L) ( 2  2) 

w(n (3,&), ( O , f ) ,  (5, &I, (3, $1 
8‘“’(P): (A, 3, ( f , O ) ,  (A, $1, (f, 3) .  

(14a) 

(14b) 

(14c) 

(14d) 

We notice that the content of irreps of %bo)( P )  and 8‘,0’( P )  coincides precisely with 
a prediction of Cardy (1986). In addition, through our use of twisted boundary 
conditions, we also find the para-fermionic representations (which have non-integer 
spin) listed in (14c) and (14d). 

As the reader might have noticed, we have not considered the spectrum of the 
Hamiltonian with free boundary conditions. In this case instead of two Virasoro 
algebras, only one appears. The content of irreps for this case will be published 
elsewhere. 

1 5 , 1 5  Y 3 9 3  
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